Let $\theta, \phi \in[0,2 \pi]$ be such that $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta)>0$ and $-1 < \sin \theta < -\frac{\sqrt{3}}{2}$. Then $\phi$ cannot satisfy
$(A)$ $0 < \phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2} < \phi<\frac{4 \pi}{3}$
$(C)$ $\frac{4 \pi}{3} < \phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2} < \phi < 2 \pi$
$(A,B,C)$
$(A,B,D)$
$(A,C,D)$
$(B,C,D)$
The most general value of $\theta $ which will satisfy both the equations $\sin \theta = - \frac{1}{2}$ and $\tan \theta = \frac{1}{{\sqrt 3 }}$ is
The number of solution of the equation $2\cos ({e^x}) = {5^x} + {5^{ - x}}$, are
For each positive real number $\lambda$. Let $A_\lambda$ be the set of all natural numbers $n$ such that $|\sin (\sqrt{n+1})-\sin (\sqrt{n})|<\lambda$. Let $A_\lambda^c$ be the complement of $A_\lambda$ in the set of all natural numbers. Then,
Let $A=\left\{\theta \in R \mid \cos ^2(\sin \theta)+\sin ^2(\cos \theta)=1\right\}$ and $B=\{\theta \in R \mid \cos (\sin \theta) \sin (\cos \theta)=0\}$. Then, $A \cap B$
The solution of $tan\,\, 2\theta\,\, tan\theta = 1$ is