Let $\theta, \phi \in[0,2 \pi]$ be such that $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta)>0$ and $-1 < \sin \theta < -\frac{\sqrt{3}}{2}$. Then $\phi$ cannot satisfy
$(A)$ $0 < \phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2} < \phi<\frac{4 \pi}{3}$
$(C)$ $\frac{4 \pi}{3} < \phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2} < \phi < 2 \pi$
$(A,B,C)$
$(A,B,D)$
$(A,C,D)$
$(B,C,D)$
$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to
If $\cot (\alpha + \beta ) = 0,$ then $\sin (\alpha + 2\beta ) = $
If $\cos p\theta = \cos q\theta ,p \ne q$, then
The number of points in $(-\infty, \infty)$, for which $x^2-x \sin x-\cos x=0$, is
Let $S=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2\right.$ $\left.\cos ^{2} 2 \theta=2\right\}$. Then, the sum of roots of all the equations $x ^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) x +6 \sin ^{2} \theta=0$ $\theta \in S$, is$...$