${(x + 2y + 3z)^8}$ के विस्तार में गुणांकों का योग होगा
${3^8}$
${5^8}$
${6^8}$
इनमें से कोई नहीं
यदि ${a_k} = \frac{1}{{k(k + 1)}},$ जबकि $k = 1,\,2,\,3,\,4,.....,\,n$, तब ${\left( {\sum\limits_{k = 1}^n {{a_k}} } \right)^2} = $
माना $n$ एक विषम पूर्णांक है। यदि $\theta $ के सभी मानों के लिये $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ हो, तो
यदि ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ के प्रसार में गुणांकों का योगफल $0$ है, तब $\alpha $ का मान है
$\frac{1}{1 ! 50 !}+\frac{1}{3 ! 48 !}+\frac{1}{5 ! 46 !}+\ldots+\frac{1}{49 ! 2 !}+\frac{1}{51 ! 1 !}$ का मान है:
यदि $b , a$ से बहुत छोटा है, जिनके लिए निम्न सर्वसमिका
$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ में, $\frac{ b }{ a }$ की क्यूब और ऊँची घातों की उपेक्षा की जा सकती है, तो $\gamma$ बराबर है