यदि ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ के प्रसार में गुणांकों का योगफल $0$ है, तब  $\alpha $ का मान है

  • [IIT 1991]
  • A

    $2$

  • B

    $-1$

  • C

    $1$

  • D

    $-2$

Similar Questions

${(x + 3)^{n - 1}} + {(x + 3)^{n - 2}}(x + 2)$$ + {(x + 3)^{n - 3}}{(x + 2)^2} + ... + {(x + 2)^{n - 1}}$ के विस्तार में ${x^r}[0 \le r \le (n - 1)]$ का गुणांक है

' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है

  • [JEE MAIN 2021]

यदि ${ }^{20} C _{1}+\left(2^{2}\right){ }^{20} C _{2}+\left(3^{2}\right){ }^{20} C _{3}+\ldots \ldots+$ $\left(20^{2}\right)^{20} C _{20}= A \left(2^{\beta}\right)$, तो क्रमित युग्म $( A , \beta)$ बराबर है

  • [JEE MAIN 2019]

माना $\sum_{\mathrm{r}=0}^{2023} \mathrm{r}^2{ }^{2023} \mathrm{C}_{\mathrm{r}}=2023 \times \alpha \times 2^{2022}$ है। तो $\alpha$ का मान है___________. 

  • [JEE MAIN 2023]

यदि $n$ एक धनात्मक पूर्णांक है तथा ${C_k} = {\,^n}{C_k}$, तब ${\sum\limits_{k = 1}^n {{k^3}\left( {\frac{{{C_k}}}{{{C_{k - 1}}}}} \right)} ^2}$ =