माना $n$ एक विषम पूर्णांक है। यदि $\theta $ के सभी मानों के लिये $\sin n\theta = \sum\limits_{r = 0}^n {{b_r}{{\sin }^r}\theta } $ हो, तो
${b_0} = 1,{b_1} = 3$
${b_0} = 0,{b_1} = n$
${b_0} = - 1,{b_1} = n$
${b_0} = 0,{b_1} = {n^2} - 3n + 3$
यदि ${ }^{20} C _{1}+\left(2^{2}\right){ }^{20} C _{2}+\left(3^{2}\right){ }^{20} C _{3}+\ldots \ldots+$ $\left(20^{2}\right)^{20} C _{20}= A \left(2^{\beta}\right)$, तो क्रमित युग्म $( A , \beta)$ बराबर है
${(1 + x - 3{x^2})^{3148}}$ के विस्तार में गुणांकों का योगफल होगा
$^{15}C_0^2{ - ^{15}}C_1^2{ + ^{15}}C_2^2 - ....{ - ^{15}}C_{15}^2$ का मान है
यदि ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, तब $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $
पूर्णांकों $n$ तथा $r$ के लिए,
माना $\left(\begin{array}{l} n \\ r \end{array}\right)=\left\{\begin{array}{cc}{ }^{ n } C _{ r }, & \text { if } n \geq r \geq 0 \\ 0, & \text { otherwise }\end{array}\right.$ तो $k$ का वह अधिकतम मान, जिसके लिए, योगफल $\sum_{i=0}^{k}\left(\begin{array}{c}10 \\ 1\end{array}\right)\left(\begin{array}{c}15 \\ k-i\end{array}\right)+\sum_{i=0}^{k+1}\left(\begin{array}{c}12 \\ i\end{array}\right)\left(\begin{array}{c}13 \\ k+1-i\end{array}\right)$ का अस्तित्व है, ........... |