यदि $b , a$ से बहुत छोटा है, जिनके लिए निम्न सर्वसमिका
$\frac{1}{a-b}+\frac{1}{a-2 b}+\frac{1}{a-3 b}+\ldots .+\frac{1}{a-n b}=\alpha n+\beta n^{2}+\gamma n^{3}$ में, $\frac{ b }{ a }$ की क्यूब और ऊँची घातों की उपेक्षा की जा सकती है, तो $\gamma$ बराबर है
$\frac{b^{2}}{3 a^{3}}$
$\frac{a+b}{3 a^{2}}$
$\frac{a^{2}+b}{3 a^{3}}$
$\frac{a+b^{2}}{3 a^{3}}$
यदि $\left( x ^{ n }+\frac{2}{ x ^5}\right)^7$ के द्विपद प्रसार में $x$ की सभी धनात्मक घातों के गुणांको का योगफल $939$ है, तो $n$ के सभी सम्भव पूर्णांक मानों का योग है :
$\sum_{ k =0}^{20}\left({ }^{20} C _{ k }\right)^{2}$ बराबर है
माना $(1+\mathrm{x})^{99}$ के प्रसार में $\mathrm{x}$ की विषम घातो के गुणांको का योग $\mathrm{K}$ है। माना $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$ के प्रसार में मध्य पद $\mathrm{a}$ है। यदि $\frac{{ }^{200} \mathrm{C}_{99} \mathrm{~K}}{\mathrm{a}}=\frac{2^{\ell} \mathrm{m}}{\mathrm{n}}$, है। जहाँ $\mathrm{m}$ तथा $\mathrm{n}$ विषम संख्याएँ हैं तो क्रमित युग्म $(\ell, \mathrm{n})$ बराबर है।
यदि $\frac{{ }^{11} \mathrm{C}_1}{2}+\frac{{ }^{11} \mathrm{C}_2}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_9}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ है तथा $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$ है, तो $\mathrm{n}+\mathrm{m}$ बराबर है ............
' $x$ ' का एक संभव मान, जिसके लिए व्यंजक $\left\{3^{\log _{3} \sqrt{25^{x-1}+7}}+3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}\right\}^{10}$ के $3^{\left(-\frac{1}{8}\right) \log _{3}\left(5^{x-1}+1\right)}$ की बढ़ती घातों में प्रसार में नौवॉँ पद $180$ के बराबर है