यदि $z$ तथा किसी दूसरी सम्मिश्र संख्या के कोणांक का योग $\pi $ हो, तब दूसरी सम्मिश्र संख्या को लिखा जा सकता है

  • A

    $\bar z$

  • B

    $ - \overline z $

  • C

    $z$

  • D

    $ - z$

Similar Questions

यदि  ${z_1}$ तथा ${z_2}$दो अशून्य सम्मिश्र संख्याएँ ऐसी हों कि $|{z_1} + {z_2}| = |{z_1}| + |{z_2}|$ हो, तब कोणांक $({z_1}) - $कोणांक $({z_2})$ का मान है                            

  • [IIT 1987]

यदि $z$ अधिकतम मापांक की एक सम्मिश्र संख्या इस प्रकार है कि  $\left| {z + \frac{1}{z}} \right| = 1$ एवं $z, x$ अक्ष पर नहीं है, तो

माना ${z_1}$ व ${z_2}$ दो सम्मिश्र संख्यायें हैं जिनके मुख्य कोणांक $\alpha $ व $\beta $ इस प्रकार हैं कि $\alpha + \beta > \pi ,$ तो $({z_1}\,{z_2})$ का मुख्य कोणांक होगा

$\frac{{1 + i}}{{1 - i}}$के कोणांक तथा मापांक क्रमश: हैं

यदि $z$ एक सम्मिश्र संख्या हो, तो $z.\,\overline z  = 0$ यदि और केवल यदि