माना ${z_1}$ व ${z_2}$ दो सम्मिश्र संख्यायें हैं जिनके मुख्य कोणांक $\alpha $ व $\beta $ इस प्रकार हैं कि $\alpha + \beta > \pi ,$ तो $({z_1}\,{z_2})$ का मुख्य कोणांक होगा
$\alpha + \beta + \pi $
$\alpha + \beta - \pi $
$\alpha + \beta - 2\pi $
$\alpha + \beta $
$\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$ का संयुग्मी ज्ञात कीजिए।
यदि $\frac{ z -\alpha}{ z +\alpha}(\alpha \in R )$ एक शुद्ध रूप से काल्पनिक संख्या है, तथा $| Z |=2$ है, तो $\alpha$ का एक मान है
यदि $z$ एक पूर्णत: अधिकल्पित संख्या इस प्रकार हो, कि ${\mathop{\rm Im}\nolimits} (z) > 0$, तब $arg(z)$=
माना $z _{1}$ तथा $z _{2}$ कोई दो शून्येतर सम्मिश्र संख्याएँ इस प्रकार हैं कि $3\left| z _{1}\right|=4\left| z _{2}\right|$ है। यदि $z =\frac{3 z _{1}}{2 z _{2}}+\frac{2 z _{2}}{3 z _{1}}$ हो, तो
यदि $z = x + iy$ समीकरणों $| z |-2=0$ तथा $|z-i||z+5 i|=0$ को संतुष्ट करता है, तो