यदि $z$ अधिकतम मापांक की एक सम्मिश्र संख्या इस प्रकार है कि  $\left| {z + \frac{1}{z}} \right| = 1$ एवं $z, x$ अक्ष पर नहीं है, तो

  • A

    ${\mathop{\rm Im}\nolimits} (z) = 0$

  • B

    ${\mathop{\rm Re}\nolimits} (z) = 0$

  • C

    $amp(z) = \pi $

  • D

    इनमें से कोई नहीं

Similar Questions

माना $a \neq b$ दो शून्येत्तर वास्तविक संख्याएँ है। तो समुच्चय

$X=\left\{z \in C: \operatorname{Re}\left(a z^2+b z\right)=a  \text { and }\operatorname{Re}\left(b z^2+ az \right)= b \right\}$

में अवयवों की संख्या है

  • [JEE MAIN 2023]

यदि $z$ एक पूर्णत: अधिकल्पित संख्या इस प्रकार हो, कि ${\mathop{\rm Im}\nolimits} (z) > 0$, तब $arg(z)$=

यदि $z$ एक सम्मिश्र संख्या हो, तो $z.\,\overline z  = 0$ यदि और केवल यदि

यदि $a >0$ तथा $z =\frac{(1+ i )^{2}}{ a - i }$ का परिमाण (magnitude) $\sqrt{\frac{2}{5}}$ है, तो $\overline{ z }$ बराबर है 

  • [JEE MAIN 2019]

यदि $\alpha$ और $\beta$ भिन्न सम्मिश्र संख्याएँ हैं जहाँ $|\beta|=1,$ तब $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$ का मान ज्ञात कीजिए