$100$ અવલોકનોનો સરવાળો અને તેમના વર્ગોનો સરવાળો અનુક્રમે $400$ અને $2475$ છે ત્યારબાદ માલૂમ પડ્યું કે ત્રણ અવલોકનો $3, 4$ અને $5$ ખોટા અવલોકનોનો છે જો ખોટા અવલોકનોને કાઢી નાખવામાં આવે તો બાકી રહેલા અવલોકનોનો વિચરણ કેટલું થાય ?
$8.25$
$8.50$
$8.00$
$9.00$
આપેલ આવૃતિ વિતરણ :
ચલ $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
આવૃતિ $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે
જો આપેલ દરેક $n$ અવલોકનો ને કોઈ ધન સંખ્યા $'k'$ વડે ગુણવવામાં આવે તો નવા અવલોકનોના ગણ માટે
$3,7,12, a, 43-a$ નું વિચરણ, એક પ્રાકૃતિક સંખ્યા થાય તેવા $a \in N$ ના મૂલ્યોની સંખ્યા $\dots\dots\dots$ છે. (મધ્યક $=13$)
જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.
બે માહિતી ગણ પૈકી દરેકનું કદ $5$ છે. જો વિચરણો $4$ એ $5$ આપેલું હોય અને તેમને અનુરૂપ મધ્યકો અનુક્રમે $2$ અને $4$ હોય તો, સંયુક્ત માહિતીના ગણનું વિચરણ કેટલું થાય ?