$10$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $8$ છે.ત્યાર બાદ,એવું જોવામાં આવ્યું કે એક અવલોકન $40$ ને બદલે ભૂલથી $50$ નોંધવામાં આવેલ હતું. તો સાચું વિચરણ $........$ છે.
$14$
$13$
$12$
$11$
ધારો કે $\mathrm{a}, \mathrm{b}, \mathrm{c} \in {N}$ અને $\mathrm{a}<\mathrm{b}<\mathrm{c}$. ધારો કે $5$ અવલોક્નો $9,25, \mathrm{a}, \mathrm{b}, \mathrm{c}$ ના મધ્યક, મધ્યક સાપેક્ષ સરેરાશ વિચલન અને વિચરણ અનુક્રમે $18,4$ અને $\frac{136}{5}$ છે. તો $2 \mathrm{a}+\mathrm{b}-\mathrm{c}=$............
$20$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $10$ અને $4$ છે. પછીથી માલૂમ પડ્યું કે અવલોકન $9$ એ ખોટું છે અને સાચું અવલોકન $11$ હોય તો સાચું વિચરણ મેળવો.
જો $\sum\limits_{i\, = \,1}^{18} {({x_i}\, - \,\,8)\,\, = \,\,9} $ અને $\,\sum\limits_{i\, = \,1}^{18} {{{({x_i}\, - \,\,8)}^2}\, = \,\,45} ,\,$ હોય, તો $\,{{\text{x}}_{\text{1}}},\,\,{x_2},\,........\,\,{x_{18}}$ નું પ્રમાણિત વિચલન શોધો .
ધારોકે $12$ અવલોકનોના મધ્યક અને વિચરણ અનુક્રમે $\frac{9}{2}$ અને $4$ છે પછી એવું જોવામાં આવ્યું કે બે અવલોકનો $7$ અને $14$ ને બદલે અનુક્રમે $9$ અને $10$ ગણતરીમાં લેવામાં આવ્યા હતા. જો સાચુ વિયરણ $\frac{m}{n}$ હોય, જ્યાં $m$ અને $n$ પરસ્પર અવિભાજ્ય છે,તો $m + n =.........$
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :
પ્રથમ $n-$ પ્રાકૃતિક સંખ્યાઓ