The sum of $100$ observations and the sum of their squares are $400$ and $2475$, respectively. Later on, three observations, $3, 4$ and $5$, were found to be incorrect . If the incorrect observations are omitted, then the variance of the remaining observations is
$8.25$
$8.50$
$8$
$9$
The frequency distribution:
$\begin{array}{|l|l|l|l|l|l|l|} \hline X & 2 & 3 & 4 & 5 & 6 & 7 \\ f & 4 & 9 & 16 & 14 & 11 & 6 \\ \hline \end{array}$
Find the standard deviation.
Let $y_1$ , $y_2$ , $y_3$ ,..... $y_n$ be $n$ observations. Let ${w_i} = l{y_i} + k\,\,\forall \,\,i = 1,2,3.....,n,$ where $l$ , $k$ are constants. If the mean of $y_i's$ is is $48$ and their standard deviation is $12$ , then mean of $w_i's$ is $55$ and standard deviation of $w_i's$ is $15$ , then values of $l$ and $k$ should be
Find the mean, variance and standard deviation using short-cut method
Height in cms | $70-75$ | $75-80$ | $80-85$ | $85-90$ | $90-95$ | $95-100$ | $100-105$ | $105-110$ | $110-115$ |
No. of children | $3$ | $4$ | $7$ | $7$ | $15$ | $9$ | $6$ | $6$ | $3$ |
Let $X=\{\mathrm{x} \in \mathrm{N}: 1 \leq \mathrm{x} \leq 17\}$ and $\mathrm{Y}=\{\mathrm{ax}+\mathrm{b}: \mathrm{x} \in \mathrm{X}$ and $\mathrm{a}, \mathrm{b} \in \mathrm{R}, \mathrm{a}>0\} .$ If mean and variance of elements of $Y$ are $17$ and $216$ respectively then $a + b$ is equal to