સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
$\theta = n\pi $
$\theta = 2n\pi \pm \frac{\pi }{2}$
$\theta = n\pi \pm {( - 1)^n}\frac{\pi }{4}$
$\theta = 2n\pi \pm \frac{\pi }{4}$
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ તો $x = $
સમીકરણ $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ ના ઉકેલોનો સરવાળો મેળવો.
સમીકરણ $\tan 3x = 1$ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos \theta = - \frac{1}{{\sqrt 2 }}$અને $\tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $sgn(sin x) = sin^2x + 2sinx + sgn(sin^2x)$ ના $\left[ { - \frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right]$ માં ઉકેલોની સંખ્યા મેળવો,
(જ્યાં $sgn(.)$ એ ચિહન વિધેય છે)