The solution of the equation $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$, is

  • A

    $\theta = n\pi $

  • B

    $\theta = 2n\pi \pm \frac{\pi }{2}$

  • C

    $\theta = n\pi \pm {( - 1)^n}\frac{\pi }{4}$

  • D

    $\theta = 2n\pi \pm \frac{\pi }{4}$

Similar Questions

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

The number of solutions of the equation $x +2 \tan x =\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :

  • [JEE MAIN 2021]

If $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, then $x = $

If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is

If $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, then the general value of $\theta $ is