જો $\cos \theta = - \frac{1}{{\sqrt 2 }}$અને $\tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi + \frac{\pi }{4}$
$(2n + 1)\,\pi + \frac{\pi }{4}$
$n\pi + \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{4}$
$8cosx = x$ ના ઉકેલોની સંખ્યા કેટલી થાય?
જો $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, તો $\sin \theta = . . ..$
અહી $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ હોય તો . . .
સમીકરણ $\cot \theta - \tan \theta = 2$ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $tan \,3x - tan \,2x - tan\, x = 0$ ના મુખ્ય ઉકેલોની સંખ્યા મેળવો.