समीकरण $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ का व्यापक हल है
$\frac{1}{2}[n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)]$
$n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
$\frac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}(3/4)$
इनमें से कोई नहीं
समीकरण $3{\sin ^2}x + 10\cos x - 6 = 0$ का व्यापक हल होगा
यदि $e ^{\left(\cos ^{2} x+\cos ^{4} x+\cos ^{6} x+\ldots . \ldots\right) \log _{c} 2}$ समीकरण $t ^{2}-9 t +8=0$, को संतुष्ट करता है, तो $\frac{2 \sin x}{\sin x+\sqrt{3} \cos x}\left(0 < x < \frac{\pi}{2}\right)$ का मान है
समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -
माना $f:[0,2] \rightarrow R$ एक फलन है जो
$f(x)=(3-\sin (2 \pi x)) \sin \left(\pi x-\frac{\pi}{4}\right)-\sin \left(3 \pi x+\frac{\pi}{4}\right)$
द्वारा परिभाषित है। यदि $\alpha, \beta \in[0,2]$ इस प्रकार है कि $\{ x \in[0,2]: f( x ) \geq 0\}=[\alpha, \beta]$ हो, तो $\beta-\alpha$ का मान होगा
यदि ${\sec ^2}\theta = \frac{4}{3}$, तो $\theta $ का व्यापक मान है