The solution of the equation $\sec \theta - {\rm{cosec}}\theta = \frac{4}{3}$ is

  • A

    $\frac{1}{2}[n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)]$

  • B

    $n\pi + {( - 1)^n}{\sin ^{ - 1}}(3/4)$

  • C

    $\frac{{n\pi }}{2} + {( - 1)^n}{\sin ^{ - 1}}(3/4)$

  • D

    None of these

Similar Questions

The general solution of $\frac{{\tan \,2x\, - \,\tan \,x}}{{1\, + \,\tan \,x\,\tan \,2x}}\, = \,1$ is 

The solution set of the system of equation

$x\,\, + \,\,y\,\, = \,\,\frac{{2\pi }}{3},\,{\rm{cos}}\,{\rm{x   + }}\,{\rm{ cos}}\,{\rm{y}}\,{\rm{ = }}\,\frac{3}{2},$ where $x$ and $y$ are real in

The number of elements in the set $S=$ $\left\{\theta \in[-4 \pi, 4 \pi]: 3 \cos ^{2} 2 \theta+6 \cos 2 \theta-\right.$ $\left.10 \cos ^{2} \theta+5=0\right\}$ is

  • [JEE MAIN 2022]

Let $A = \left\{ {\theta \,:\,\sin \,\left( \theta  \right) = \tan \,\left( \theta  \right)} \right\}$ and $B = \left\{ {\theta \,:\,\cos \,\left( \theta  \right) = 1} \right\}$ be two sets. Then

  • [JEE MAIN 2013]

Number of solutions of the equation $2^x + x = 2^{sin \ x} +  \sin x$ in $[0,10\pi ]$ is -