राशियाँ $A$ और $B$ सूत्र $m = A/B$ से सम्बन्धित हैं। यहाँ पर $m = $ रैखिक घनत्व तथा $A$ बल को प्रदर्शित कर रहा है। $B$ की विमायें होंगी

  • A

    दाब की

  • B

    कार्य की

  • C

    गुप्त ऊष्मा की

  • D

    उपरोक्त में से कोई नहीं

Similar Questions

$[ {\varepsilon _0} ]$ निर्वात की विघुततशीलता की विमा निरूपित करता है। यदि $M =$ द्रव्यमान, $L =$ लम्बाई, $T =$ समय तथा $A =$ विघुत धारा तो निम्न में से काँन सा विमीय सूत्र सही है ?

  • [JEE MAIN 2013]

एक दृढ़ घन $A$ का द्रव्यमान $M$ एवं इसकी प्रत्येक भुजा की लम्बाई $L$ है, यह एकसमान विमा के, दूसरे कम दृढ़ता गुणांक $(\eta )$ वाले घन $ B$ के ऊपर इस प्रकार से स्थित है कि $A$ का निचला पृष्ठ $B$ के ऊपरी पृष्ठ को पूरी तरह ढ़क लेता है। $B$ की निचली सतह दृढ़ता से क्षैतिज सतह पर स्थित है। एक अल्प परिमाण का बल $F,\,A$ की एक सतह पर लम्बवत् लगाया जाता है। बल को हटाने पर $A$ छोटे दोलन करने लगता है जिसका आवर्तकाल दिया जाता है

  • [IIT 1992]

मुक्त रुप से गिरती हुई वस्तु का वेग ${g^p}{h^q}$ से परिवर्तित होता है, जहाँ $g$ गुरुत्वीय त्वरण तथा $h$ ऊँचाई है, तो $p$ और $q$ के मान होंगें

विभानतार $V$, विधुत धारा $I$, पराविधुतांक  $\varepsilon_0$, पारगम्यता $\mu_0$ तथा प्रकाश की चाल $c$ को मिलाकर विमीय रूप से सही विकल्प है (हैं)

$(A)$ $\mu_0 I ^2=\varepsilon_0 V ^2$ $(B)$ $\varepsilon_0 I =\mu_0 V$ $(C)$ $I =\varepsilon_0 cV$ $(D)$ $\mu_0 cI =\varepsilon_0 V$

  • [IIT 2015]

यदि $E , L , M$ तथा $G$ क्रमशः ऊर्जा, कोणीय संवेग, द्रव्यमान तथा गुरूत्वाकर्षण नियतांक को प्रदर्शित करते हों, तो सूत्र $P = EL ^{2} M ^{-5} G ^{-2}$ में $P$ की विमा होगी।

  • [JEE MAIN 2021]