$[ {\varepsilon _0} ]$ निर्वात की विघुततशीलता की विमा निरूपित करता है। यदि $M =$ द्रव्यमान, $L =$ लम्बाई, $T =$ समय तथा $A =$ विघुत धारा तो निम्न में से काँन सा विमीय सूत्र सही है ?

  • [JEE MAIN 2013]
  • A
    $[{\varepsilon _0}]=[M^{-1}L^{-3}T^2A]$
  • B
    $[{\varepsilon _0}]=[M^{-1}L^{-3}T^4A^2]$
  • C
    $[{\varepsilon _0}]=[M^{-1}L^2T^{-1}A^{-2}]$
  • D
    $[{\varepsilon _0}]=[M^{-1}L^2T^{-1}A]$

Similar Questions

दो भौतिक राशियों $A$ तथा $\mathrm{B}$ की परिकल्पना कीजिये जो एक दूसरे से संबंध $E=\frac{B-x^2}{A t}$ के द्वारा संबंधित है जहाँ $\mathrm{E}, \mathrm{x}$ तथा $\mathrm{t}$ की विमाएँ क्रमशः ऊर्जा, लम्बाई तथा समय की विमाओं के समान है। $\mathrm{AB}$ की विमां है :

  • [JEE MAIN 2024]

एक तरंग का समीकरण, $Y = A\sin \omega \left( {\frac{x}{v} - K} \right)$ से दिया जाता है। जहाँ $\omega $ कोणीय वेग तथा $v$ रेखीय वेग है। $K$ की विमा है

स्टोक के नियमानुसार, एक $a$ त्रिज्या का गोला जो कि , श्यानता गुणांक (coefficient of viscosity) के द्रव में $V$ चाल में चलता है, पर श्यानकर्षण बल (viscous drag) $F$ निम्न समीकरण से निरूपित किया जाता है : $F=a \eta_a v$ आयतन $V$ को निम्न समीकरण से निरूपित किया जा सकता है $\frac{V}{t}=k\left(\frac{p}{l}\right)^a \eta^b r^c$ जहाँ ${ }^k$ विमाविहीन स्थिरांक है। तो ${ }^a$, और $^c$ के सही मान क्या है ?

  • [KVPY 2017]

एक पिण्ड की स्थिति, जो त्वरण 'a' से गतिशील है, व्यंजक $x = K{a^m}{t^n}$ से प्रदर्शित है, जहाँ t समय है। $m$ एवं $n$ की विमा होगी

सूत्र $X = 3Y{Z^2}$ में $X$ और $Z$ क्रमश: धारिता और चुम्बकीय क्षेत्र की विमायें हैं। $SI$ पद्धति में $Y$ की विमायें हैं

  • [JEE MAIN 2019]