The quantities $A$ and $B$ are related by the relation, $m = A/B$, where $m$ is the linear density and $A$ is the force. The dimensions of $B$ are of

  • A

    Pressure

  • B

    Work

  • C

    Latent heat

  • D

    None of the above

Similar Questions

Turpentine oil is flowing through a tube of length $l$ and radius $r$. The pressure difference between the two ends of the tube is $P .$ The viscosity of oil is given by $\eta=\frac{P\left(r^{2}-x^{2}\right)}{4 v l}$ where $v$ is the velocity of oil at a distance $x$ from the axis of the tube. The dimensions of $\eta$ are

  • [AIPMT 1993]

A beaker contains a fluid of density $\rho \, kg / m^3$, specific heat $S\, J / kg\,^oC$ and viscosity $\eta $. The beaker is filled upto height $h$. To estimate the rate of heat transfer per unit area $(Q / A)$ by convection when beaker is put on a hot plate, a student proposes that it should depend on $\eta \,,\,\left( {\frac{{S\Delta \theta }}{h}} \right)$ and $\left( {\frac{1}{{\rho g}}} \right)$ when $\Delta \theta $ (in $^oC$) is the difference in the temperature between the bottom and top of the fluid. In that situation the correct option for $(Q / A)$ is

  • [JEE MAIN 2015]

The dimensions of $\frac{\alpha}{\beta}$ in the equation $F=\frac{\alpha-t^2}{\beta v^2}$, where $F$ is the force, $v$ is velocity and $t$ is time, is ..........

In a typical combustion engine the work done by a gas molecule is given $W =\alpha^{2} \beta e ^{\frac{-\beta x ^{2}}{ KT }}$, where $x$ is the displacement, $k$ is the Boltzmann constant and $T$ is the temperature. If $\alpha$ and $\beta$ are constants, dimensions of $\alpha$ will be

  • [JEE MAIN 2021]

If velocity$(V)$, force$(F)$ and time$(T)$ are chosen as fundamental quantities then dimensions of energy are