गुणनफल $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ $\infty$ तक बराबर है
$2^{\frac{1}{2}}$
$2^{\frac{1}{4}}$
$2$
$1$
यदि किसी गुणोत्तर श्रेणी के तीन पदों का योग $19$ एवं गुणनफल $216$ हो, तो श्रेणी का सार्व-अनुपात होगा
माना $x _1, X _2, x _3, \ldots, x _{20}$ एक गुणोत्तर श्रेढ़ी में हैं, जिसमें $x _1=3$ तथा सार्व अनुपात $\frac{1}{2}$ है। प्रत्येक $x _{ i }$ की जगह $\left( x _{ i }- i \right)^2$ लेकर नये आंकड़ें बनाए जाते हैं। यदि नये आंकड़ों का माध्य $\overline{ x }$ है तो महत्तम पूर्णाक $\leq \overline{ x }$ है $..........$ I
अनुक्रम का कौन सा पद.
$2,2 \sqrt{2}, 4, \ldots ; 128$ है ?
श्रेणी $\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + .........$ के प्रथम $n$ पदों का योग है
यदि $a, b, c, d$ तथा $p$ विभिन्न वास्तविक संख्याएँ इस प्रकार हैं कि $\left(a^{2}+b^{2}+c^{2}\right) p^{2}-2(a b+b c+c d) p+\left(b^{2}+c^{2}+d^{2}\right) \leq 0$ तो दर्शाइए कि $a, b, c$ तथा $d$ गुणोत्तर श्रेणी में हैं।