गुणनफल $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ $\infty$ तक बराबर है
$2^{\frac{1}{2}}$
$2^{\frac{1}{4}}$
$2$
$1$
$\alpha ,\;\beta $ समीकरण ${x^2} - 3x + a = 0$ के मूल हैं और $\gamma ,\;\delta $ समीकरण ${x^2} - 12x + b = 0$ के मूल हैं। यदि $\alpha ,\;\beta ,\;\gamma ,\;\delta $ एक वर्धमान गुणोत्तर श्रेणी बनाते हों, तो $(a,\;b) = $
$1 + \cos \alpha + {\cos ^2}\alpha + .......\,\infty = 2 - \sqrt {2,} $ तब $\alpha $ $(0 < \alpha < \pi )$ का मान होगा
किसी गुणोत्तर श्रेणी के पद धनात्मक हैं। यदि प्रत्येक पद उसके बाद आने वाले दो पदों के योग के बराबर है, तो सार्वनिष्पत्ति होगी
किसी गुणोत्तर श्रेणी की $3$ संख्याओं का योग $38$ तथा गुणनफल $1728$ है तब मध्य संख्या है
किसी अनंत गुणोत्तर श्रेणी का योग $3$ है तथा श्रेणी के पदों के वर्गों का योग भी $3$ है, तो श्रेणी होगी