गुणनफल $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}}$ $\infty$ तक बराबर है

  • [JEE MAIN 2020]
  • A

    $2^{\frac{1}{2}}$

  • B

    $2^{\frac{1}{4}}$

  • C

    $2$

  • D

    $1$

Similar Questions

यदि किसी गुणोत्तर श्रेणी का प्रथम पद $a$, अन्तिम पद $l$ तथा सार्वअनुपात $r$ हो, तो इस श्रेणी के पदों की संख्या है

$60$ तथा $n$ पदों की दो $G.P.$ क्रमशः $2,2^2, 2^3, \ldots$ तथा $4,4^2, 4^3, \ldots$ हैं। यदि सभी $60+ n$ पदों का गुणोत्तर माध्य $(2)$ ${ }^{\frac{225}{8}}$ है, तो $\sum \limits_{ k =1}^{ n } k ( n - k )$ बराबर है :

  • [JEE MAIN 2022]

यदि $\frac{6}{3^{12}}+\frac{10}{3^{11}}+\frac{20}{3^{10}}+\frac{40}{3^9}+\ldots . .+\frac{10240}{3}=2^{ n } \cdot m$ है, जहाँ $m$ एक विषम संख्या है, तो $m . n$ बराबर है $...............$

  • [JEE MAIN 2022]

एक गुणोत्तर श्रेणी में पदों की संख्या सम है। यदि सभी पदों का योगफल विषम स्थान वाले पदों के योगफल का $5$ गुना है, तब सार्व-अनुपात होगा

एक अनंत गुणोत्तर श्रेणी, जिसका प्रथम पद $a$ तथा सार्वानुपात $r$ है, का योग $4$ तथा द्वितीय पद $3/4$ है, तब

  • [IIT 2000]