$2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ ની કિમંત મેળવો.
$2^{\frac{1}{2}}$
$2^{\frac{1}{4}}$
$2$
$1$
સમગુણોત્તર શ્રેણીની પ્રથમ $3$ પદોનો સરવાળો $\frac{39}{10}$ છે અને તેમનો ગુણાકાર $1$ છે, તો સામાન્ય ગુણોત્તર અને તે પદો શોધો.
નીશ્ચાયક $\Delta \, = \,\left| {\begin{array}{*{20}{c}}
a&b&{a\alpha \, + \,b\,} \\
b&c&{b\alpha \, + \,c} \\
{a\alpha \, + \,b}&{b\alpha \, + \,c}&0
\end{array}} \right| \, = \,0\,$ થાય, જો $=................$
જેના સામાન્ય ગુણોત્તર $3$ હોય તેવી $n$ પદવાળી સમગુણોત્તર શ્રેણીનાં $n$ પદનો સરવાળો $364$ હોય અને તેનું છેલ્લું પદ $243$ હોય, તો $n = ……$
બે સંખ્યાઓનો સરવાળો તેમના સમગુણોત્તર મધ્યક કરતાં છ ગણો હોય, તો બતાવો કે સંખ્યાઓનો ગુણોત્તર $(3+2 \sqrt{2}):(3-2 \sqrt{2})$ થાય.
જો $x = \,\frac{4}{3}\, - \,\frac{{4x}}{9}\, + \,\,\frac{{4{x^2}}}{{27}}\, - \,\,.....\,\infty $ , હોય તો $x$ ની કિમત મેળવો