The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ is equal to
$2^{\frac{1}{2}}$
$2^{\frac{1}{4}}$
$2$
$1$
How many terms of the $G.P.$ $3, \frac{3}{2}, \frac{3}{4}, \ldots$ are needed to give the sum $\frac{3069}{512} ?$
The sum of few terms of any ratio series is $728$, if common ratio is $3$ and last term is $486$, then first term of series will be
If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in
The roots of the equation
$x^5 - 40x^4 + px^3 + qx^2 + rx + s = 0$ are in $G.P.$ The sum of their reciprocals is $10$. Then the value of $\left| s \right|$ is
If the sum of the $n$ terms of $G.P.$ is $S$ product is $P$ and sum of their inverse is $R$, than ${P^2}$ is equal to