The product $2^{\frac{1}{4}} \cdot 4^{\frac{1}{16}} \cdot 8^{\frac{1}{48}} \cdot 16^{\frac{1}{128}} \cdot \ldots .$ to $\infty$ is equal to
$2^{\frac{1}{2}}$
$2^{\frac{1}{4}}$
$2$
$1$
The numbers $(\sqrt 2 + 1),\;1,\;(\sqrt 2 - 1)$ will be in
The number of bacteria in a certain culture doubles every hour. If there were $30$ bacteria present in the culture originally, how many bacteria will be present at the end of $2^{\text {nd }}$ hour, $4^{\text {th }}$ hour and $n^{\text {th }}$ hour $?$
Fifth term of a $G.P.$ is $2$, then the product of its $9$ terms is
The sum can be found of a infinite $G.P.$ whose common ratio is $r$
If $a,\;b,\;c$ are in $A.P.$, $b,\;c,\;d$ are in $G.P.$ and $c,\;d,\;e$ are in $H.P.$, then $a,\;c,\;e$ are in