$x$ का वह मान, जिसके लिए ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ अस्तित्व में है, होगा  

  • A

    $\frac{{5\pi }}{4}$

  • B

    $\frac{{3\pi }}{4}$

  • C

    $\frac{\pi }{2}$

  • D

    $x$ के सभी मान

Similar Questions

$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :

  • [KVPY 2018]

सिद्ध कीजिए: $\cos 2 x \cos _{2}^{x}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$

यदि $\sqrt 3 \cos \,\theta  + \sin \theta  = \sqrt 2 ,$ तो $\theta $ का व्यापक मान है

मान लीजिए कि $\theta, 0 < \theta < \pi / 2$, एक कोण इस तरह है कि समीकरण $x^2+4 x \cos \theta+\cot \theta=0$ का $x$ के लिए समान मूल हैं। $\theta$ का रेडियन में क्या मान होगा ?

  • [KVPY 2021]

यदि $|k|\, = 5$ तथा ${0^o} \le \theta  \le {360^o}$, तब 3$\cos \theta  + 4\sin \theta  = k$ के विभिन्न हलों की संख्या होंगी