यदि $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $, तो $\theta $ के व्यापक मान है
$2n\pi \pm \frac{\pi }{3}$
$2n\pi + \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{3}$
$n\pi - \frac{\pi }{3}$
यदि $2{\sin ^2}\theta = 3\cos \theta ,$ जहाँ $0 \le \theta \le 2\pi $, तो $\theta = $
माना $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ तथा $\beta=\sum_{\mathrm{x} \in \mathrm{S}} \tan ^2\left(\frac{\mathrm{x}}{3}\right)$, तो $\frac{1}{6}(\beta-14)^2$ बराबर है
यदि $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, तो $\theta $ का व्यापक मान है
$\sin 7\theta = \sin 4\theta - \sin \theta $ तथा $0 < \theta < \frac{\pi }{2}$ को सन्तुष्ट करने वाले $\theta $ के मान हैं
$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :