समीकरण $\sin \left(\pi \sin ^2(\theta)\right)+\sin \left(\pi \cos ^2(\theta)\right)=2 \cos \left(\frac{\pi}{2} \cos (\theta)\right)$ के हलों की कुल संख्या जो $0 \leq \theta \leq 2 \pi$ को संतुष्ट करती है निम्न है।
$1$
$2$
$4$
$7$
माना $[0,4 \pi]$ में समीकरण $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ के सभी हलों (रिडियन में) का योग $S$ है। तो $\frac{8 S }{\pi}$ बराबर है .......... |
यदि $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, तो $x = $
यदि $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, तो $\theta $ का व्यापक मान है
मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$
समीकरण $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ को सन्तुष्ट करने वाला $\theta $ का व्यापक मान है