The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is
$1$
$2$
$4$
$7$
The number of solutions of the equation $\sin \theta+\cos \theta=\sin 2 \theta$ in the interval $[-\pi, \pi]$ is
Number of solutions of $5$ $cos^2 \theta -3 sin^2 \theta + 6 sin \theta cos \theta = 7$ in the interval $[0, 2 \pi] $ is :-
Prove that
$\cos 2 x \cos \frac{x}{2}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$
The sum of solutions of the equation $\frac{\cos \mathrm{x}}{1+\sin \mathrm{x}}=|\tan 2 \mathrm{x}|, \mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)-\left\{\frac{\pi}{4},-\frac{\pi}{4}\right\}$ is :