समीकरण $\tan \theta + \sec \theta = \sqrt 3 ,$ जहाँ $0 < \theta < 2\pi $ के हलों की संख्या है
$0$
$1$
$2$
$3$
यदि $\sqrt 2 \sec \theta + \tan \theta = 1,$ तो $\theta $ का व्यापक मान है
माना $S=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum \limits_{m=1}^9 \sec \left(\theta+( m -1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{ m \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$ है। तब
यदि $\tan \theta + \tan 2\theta + \tan 3\theta = \tan \theta \tan 2\theta \tan 3\theta $, तो $\theta $ का व्यापक मान है
यदि ${\sec ^2}\theta = \frac{4}{3}$, तो $\theta $ का व्यापक मान है
यदि $\cos A\,\,\sin \left( {A - \frac{\pi }{6}} \right)$ का मान अधिकतम है, तो $A$ का मान है