उन बिन्दुओं, जहाँ वक्र
$f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in \mathbb{R}, x$-अक्ष को
काटता है, की संख्या है_______
$2$
$4$
$6$
$8$
यादि $f(x) = \frac{x}{{x - 1}}$, तब $\frac{{f(a)}}{{f(a + 1)}} = $
मान लें कि $x \in R$ के लिए $R$ सभी वास्तविक संख्याओं का समुच्चय है और $f(x)=\sin ^{10} x\left(\cos ^8 x+\right.$ $\left.\cos ^4 x+\cos ^2 x+1\right)$. मान लें कि $S=\left\{\lambda \in R \mid\right.$ में एक बिंदु $c \in(0,2 \pi)$ है जिसके लिए $\left.f^{\prime}(c)=\lambda f(c)\right\}$. तब
माना $f(\theta ) = \sin \theta (\sin \theta + \sin 3\theta )$, तब $f(\theta )$
यदि $R$ वास्तविक संख्याओं का एक समुच्चय इस प्रकार है कि $f: R \rightarrow R$ निम्नलिखित द्वारा परिभाषित होता है
$f(x)=\frac{[x]}{1+[x]^2}$, जहाँ $[x]$ अधिकतम पूर्णांक जो $x$ के बराबर या उससे छोटा है तथा $[x\}=x-[x]$.तब निम्नलिखित में से कौन सा कथन सत्य है ?
$I$. $f^{\prime}$ का परास $(range)$ एक बंद अन्तराल $(closed\,interval)$ है
$II$. $f, R$ पर सतत $(continuous)$ फलन है
$III$. $f$. $I$पर एकैक $(one-one)$ फलन है
फलन $\cos ^{-1}\left(\frac{2 \sin ^{-1}\left(\frac{1}{4 x^2-1}\right)}{\pi}\right)$ का प्रांत है :