The number of points, where the curve $f(x)=e^{8 x}-e^{6 x}-3 e^{4 x}-e^{2 x}+1, x \in R$ cuts $x$-axis, is equal to
$2$
$4$
$6$
$8$
The graph of the function $y = f(x)$ is symmetrical about the line $x = 2$, then
Consider a function $f : N \rightarrow R$, satisfying $f(1)+2 f(2)+3 f(3)+\ldots+x f(x)=x(x+1) f(x) ; x \geq 2$ with $f(1)=1$. Then $\frac{1}{f(2022)}+\frac{1}{f(2028)}$ is equal to
If in greatest integer function, the domain is a set of real numbers, then range will be set of
Show that function $f : R \rightarrow\{ x \in R :-1< x <1\}$ defined by $f ( x )=\frac{x}{1+|x|^{\prime}} x \in R$ is one-one and onto function.