मान लें कि $x \in R$ के लिए $R$ सभी वास्तविक संख्याओं का समुच्चय है और $f(x)=\sin ^{10} x\left(\cos ^8 x+\right.$ $\left.\cos ^4 x+\cos ^2 x+1\right)$. मान लें कि $S=\left\{\lambda \in R \mid\right.$ में एक बिंदु $c \in(0,2 \pi)$ है जिसके लिए $\left.f^{\prime}(c)=\lambda f(c)\right\}$. तब
$S=R$
$S=\{0\}$
$S=[0,2 \pi]$
$S$ एक से अधिक अवयव युक्त परिमित समुच्चय है.
मान लीजिए कि कक्षा $X$ के सभी $50$ विद्यार्थियों का समुच्चय $A$ है। मान लीजिए $f: A \rightarrow N , f(x)=$ विद्यार्थी $x$ का रोल नंबर, द्वारा परिभाषित एक फलन है। सिद्ध कीजिए कि $f$ एकैकी है किंतु आच्छादक नहीं है।
माना $\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$ तथा $\mathrm{S}=\{1,2,3,4\}$ हैं। आच्छादक फलनों $f: R \rightarrow S$ जिनके लिये $f(a) \neq 1$ है, की कुल संख्या है
किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$
मान लें $f(x)$ एक चर बहुपद इस प्रकार है कि $f\left(\frac{1}{2}\right)=100$ तथा $f(x) \leq 100$ प्रत्येक वास्तविक $x$ के लिए है। निम्नलिखित में से कौन सा कथन आवश्यक रूप से सत्य नहीं है?
समुच्चय
$A -\left\{ x \in N : x ^2-10 x +9 \leq 0\right\}$ से समुच्चय
$B =\left\{ n ^2: n \in N \right\}$ में ऐसे फलनों $f$, जिनके लिए
$f ( x ) \leq( x -3)^2+1, x \in A$ है, की संख्या है $........$