The mean and variance of $7$ observations are $8$ and $16,$ respectively. If five observations are $2, 4, 10,12,14,$ then the absolute difference of the remaining two observations is
$2$
$4$
$3$
$1$
For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
Let $X$ be a random variable, and let $P(X=x)$ denote the probability that $X$ takes the value $x$. Suppose that the points $(x, P(X=x)), x=0,1,2,3,4$, lie on a fixed straight line in the $x y$-plane, and $P(X=x)=0$ for all $x \in R$ $\{0,1,2,3,4\}$. If the mean of $X$ is $\frac{5}{2}$, and the variance of $X$ is $\alpha$, then the value of $24 \alpha$ is. . . . .
If the mean and variance of the following data:
$6,10,7,13, a, 12, b, 12$ are 9 and $\frac{37}{4}$ respectively, then $(a-b)^{2}$ is equal to:
The mean and variance of $10$ observations were calculated as $15$ and $15$ respectively by a student who took by mistake $25$ instead of $15$ for one observation. Then, the correct standard deviation is$.....$
If the variance of the first $n$ natural numbers is $10$ and the variance of the first m even natural numbers is $16$, then $m + n$ is equal to