निम्नलिखित श्रेणी का मानक विचलन है
Measurements |
0-10 |
10-20 |
20-30 |
30-40 |
Frequency |
1 |
3 |
4 |
2 |
$81$
$7.6$
$9$
$2.26$
यदि पाँच प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\frac{24}{5}$ तथा $\frac{194}{25}$ हैं तथा प्रथम चार प्रेक्षणों का माध्य $\frac{7}{2}$, है, तो प्रथम चार प्रेक्षणों का प्रसरण बराबर है
यदि आंकडों $65,68,58,44,48,45,60, \alpha, \beta, 60$ जहाँ $\alpha>\beta$ है, के माध्य तथा प्रसरण क्रमशः $56$ तथा $66.2$ है, तो $\alpha^2+\beta^2$ बराबर है ................
आंकडों
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
का प्रसरण $\sigma^2$ बराबर है ..........
$15$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $12$ तथा 3 प्राप्त किए गए। पुनः जाँच पर यह पाया गया कि एक प्रेक्षण को $12$ की जगह $10$ पढ़ा गया था। यदि सही प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $\mu$ तथा $\sigma^2$ है, तो $15\left(\mu+\mu^2+\sigma^2\right)$ बराबर है ................|
प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है