माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :
$5$
$\sqrt{5}$
$10$
$\sqrt{115}$
पाँच गणनाओं $1, 2, 3, 4, 5$ का मानक विचलन है
आंकडों
$x_i$ | $0$ | $1$ | $5$ | $6$ | $10$ | $12$ | $17$ |
$f_i$ | $3$ | $2$ | $3$ | $2$ | $6$ | $3$ | $3$ |
का प्रसरण $\sigma^2$ बराबर है ..........
यदि संख्याओं $1,2,3, \ldots .,, n$ (जहाँ $n$ विषम है) का माध्य के सापेक्ष माध्य विचलन $\frac{5( n +1)}{ n }$ है तब $n$ बराबर होगा -
यदि आरोही क्रम में लिखी संख्याओं $3,5,7,2 k$, $12,16,21,24$ का माध्यिका के सापेक्ष माध्य विचलन 6 है, तो माध्यिका है
निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |