माना $10$ प्रेक्षणों $\mathrm{a}_1, \mathrm{a}_2, \ldots . \mathrm{a}_{10}$ के लिए $\sum_{\mathrm{k}=1}^{10} \mathrm{a}_{\mathrm{k}}=50$तथा $\sum_{\forall k < j} a_k \cdot a_j=1100$ है। तो $a_1, a_2, \ldots, a_{10}$ का मानक विचलन बराबर है :

  • [JEE MAIN 2024]
  • A

    $5$

  • B

     $\sqrt{5}$

  • C

    $10$

  • D

    $\sqrt{115}$

Similar Questions

पाँच गणनाओं $1, 2, 3, 4, 5$ का मानक विचलन है

आंकडों

$x_i$ $0$ $1$ $5$ $6$ $10$ $12$ $17$
$f_i$ $3$ $2$ $3$ $2$ $6$ $3$ $3$

का प्रसरण $\sigma^2$ बराबर है ..........

  • [JEE MAIN 2024]

यदि संख्याओं $1,2,3, \ldots .,, n$ (जहाँ $n$ विषम है) का माध्य के सापेक्ष माध्य विचलन $\frac{5( n +1)}{ n }$ है तब $n$ बराबर होगा -

  • [JEE MAIN 2022]

यदि आरोही क्रम में लिखी संख्याओं $3,5,7,2 k$, $12,16,21,24$ का माध्यिका के सापेक्ष माध्य विचलन 6 है, तो माध्यिका है

  • [JEE MAIN 2022]

निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए

वर्ग $30-40$ $40-50$ $50-60$ $60-70$ $70-80$ $80-90$ $90-100$
बारंबारता $3$ $7$ $12$ $15$ $8$ $3$ $2$