छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
Let the observations be $x_{1}, x_{2}, x_{3}, x _{4}, x_{5} ,$ and $x_{6}$
It is given that mean is $8$ and standard deviation is $4$
Mean, $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8$ .......$(1)$
If each observation is multiplied by $3$ and the resulting observations are $y_{i},$ then
$y_{1}=3 x_{1}$ i.e., $x_{1}=\frac{1}{3} y_{1},$ for $i=1$ to $6$
New Mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$
$=\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6}$
$=3 \times 8$ .......[ Using $(1)$ ]
$=28$
Standard deviation, $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^6 {{{\left( {{x_1} - \bar x} \right)}^2}} } $
$\therefore {\left( 4 \right)^2} = \frac{1}{6}\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}} $
$\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}} = 96$ ........$(2)$
From $(1)$ and $(2),$ it can be observed that,
$\bar{y}=3 \bar{x}$
$\bar{x}=\frac{1}{3} \bar{y}$
Substituting the values of $x_{1}$ and $\bar{x}$ in $(2),$ we obtain
$\sum\limits_{i = 1}^6 {{{\left( {\frac{1}{3}{y_1} - \frac{1}{3}\bar y} \right)}^2} = 96} $
$ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{y_1} - \bar y} \right)}^2} = 864} $
Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$
Hence, the standard deviation of new observations is $\sqrt{144}=12$
माना $5$ प्रेक्षणों $x_1, x_2, x_3, x_4, x_5$ का माध्य तथा प्रसरण क्रमश: $\frac{24}{5}$ तथा $\frac{194}{25}$ है। यदि प्रथम चार प्रेक्षणों का माध्य तथा प्रसरण क्रमश: $\frac{7}{2}$ तथा $a$ है, तो $\left(4 a+x_5\right)$ है:
यदि पाँच प्रे क्षणों $x _{1}, x _{2}, x _{3}, x _{4}, x _{5}$ का माध्य तथा मानक विचलन क्रमशः $10$ तथा $3$ हो, तो छः प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{5}$ तथा $-50$ का प्रसरण होगा-
निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए
${x_i}$ | $4$ | $8$ | $11$ | $17$ | $20$ | $24$ | $32$ |
${f_i}$ | $3$ | $5$ | $9$ | $5$ | $4$ | $3$ | $1$ |
$20$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमश: $10$ तथा $2.5$ निकाले गये। यह पाया गया कि गलती से एक आंकड़ा $35$ की जगह $25$ लिया गया था। यदि सही आकड़ों का माध्य तथा मानक विचलन क्रमशः $\alpha$ तथा $\sqrt{\beta}$ हैं, तो $(\alpha, \beta)$ है
माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।