छ: प्रेक्षणों का माध्य तथा मानक विचलन क्रमश: $8$ तथा $4$ हैं। यदि प्रत्येक प्रेक्षण को तीन से गुणा कर दिया जाए तो परिणामी प्रेक्षणों का माध्य व मानक विचलन ज्ञात कीजिए।
Let the observations be $x_{1}, x_{2}, x_{3}, x _{4}, x_{5} ,$ and $x_{6}$
It is given that mean is $8$ and standard deviation is $4$
Mean, $\bar{x}=\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}}{6}=8$ .......$(1)$
If each observation is multiplied by $3$ and the resulting observations are $y_{i},$ then
$y_{1}=3 x_{1}$ i.e., $x_{1}=\frac{1}{3} y_{1},$ for $i=1$ to $6$
New Mean, $\bar{y}=\frac{y_{1}+y_{2}+y_{3}+y_{4}+y_{5}+y_{6}}{6}$
$=\frac{3\left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}+x_{6}\right)}{6}$
$=3 \times 8$ .......[ Using $(1)$ ]
$=28$
Standard deviation, $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^6 {{{\left( {{x_1} - \bar x} \right)}^2}} } $
$\therefore {\left( 4 \right)^2} = \frac{1}{6}\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}} $
$\sum\limits_{i = 1}^6 {{{\left( {{x_i} - \bar x} \right)}^2}} = 96$ ........$(2)$
From $(1)$ and $(2),$ it can be observed that,
$\bar{y}=3 \bar{x}$
$\bar{x}=\frac{1}{3} \bar{y}$
Substituting the values of $x_{1}$ and $\bar{x}$ in $(2),$ we obtain
$\sum\limits_{i = 1}^6 {{{\left( {\frac{1}{3}{y_1} - \frac{1}{3}\bar y} \right)}^2} = 96} $
$ \Rightarrow \sum\limits_{i = 1}^6 {{{\left( {{y_1} - \bar y} \right)}^2} = 864} $
Therefore, variance of new observations $=\left(\frac{1}{6} \times 864\right)=144$
Hence, the standard deviation of new observations is $\sqrt{144}=12$
$100$ प्रेक्षणों का माध्य और मानक विचलन क्रमश: $20$ और $3$ हैं। बाद में यह पाया गया कि तीन प्रेक्षण $21,21$ तथा $18$ गलत थे। यदि गलत प्रेक्षणों को हटा दिया जाए तो माध्य व मानक विचलन ज्ञात कीजिए।
$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $2$ हैं। इन $10$ प्रेक्षणों में से प्रत्येक को $p$ से गुणा करने के पश्चात प्रत्येक में से $q$ कम किया गया, जहाँ $p \neq 0$ तथा $q \neq 0$ हैं। यदि नए माध्य तथा मानक विचलन के मान अपने मूल मानों के आधे हैं, तो $q$ का मान हैं
$8$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $10$ तथा $13.5$ है। यदि इनमें से $6$ प्रेक्षण $5,7,10,12,14,15$ हैं, तो शेष दो प्रेक्षणों का निरपेक्ष अन्तर होगा
सात प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ है। यदि इनमें से $5$ प्रेक्षण $2,4,10,12,14$ है, तो शेष दो प्रेक्षणों का गुणनफल है
प्रथम $n$ प्राकृत संख्याओं का मानक विचलन $(S.D.)$ है