$20$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमश: $10$ तथा $2.5$ निकाले गये। यह पाया गया कि गलती से एक आंकड़ा $35$ की जगह $25$ लिया गया था। यदि सही आकड़ों का माध्य तथा मानक विचलन क्रमशः $\alpha$ तथा $\sqrt{\beta}$ हैं, तो $(\alpha, \beta)$ है
$(11,26)$
$(10.5,25)$
$(11,25)$
$(10.5,26)$
माना $n$ प्रेक्षण $x_{1}, x_{2}, \ldots, x_{n}$ है तथा उनका समान्तर माध्य $\bar{x}$ तथा प्रसरण $\sigma^{2}$ है।
कथन $1:\, 2 x_{1} , 2 x_{2}, \ldots , 2 x_{n}$ का प्रसरण $4 \sigma^{2}$ है।
कथन $2:\, 2 x_{1} , 2 x_{2} \ldots . . , 2 x_{n}$ का समान्तर माध्य $4 \bar{x}$ है।
लघु विधि द्वारा माध्य व मानक विचलन ज्ञात कीजिए।
${x_i}$ | $60$ | $61$ | $62$ | $63$ | $64$ | $65$ | $66$ | $67$ | $68$ |
${f_i}$ | $2$ | $1$ | $12$ | $29$ | $25$ | $12$ | $10$ | $4$ | $5$ |
$20$ प्रेक्षणों के माध्य तथा प्रसरण क्रमशः $10$ तथा $4$ पाये गये। पुनः जाँच करने पर पाया गया कि एक प्रेक्षण $9$ गलत था सही प्रेक्षण $11$ था। तो सही प्रसरण है
माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :
निम्नलिखित बंटन के लिए माध्य, प्रसरण व मानक विचलन ज्ञात कीजिए
वर्ग | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
बारंबारता | $3$ | $7$ | $12$ | $15$ | $8$ | $3$ | $2$ |