निम्नलिखित आँकड़ों के लिए प्रसरण व मानक विचलन ज्ञात कीजिए

${x_i}$ $4$ $8$ $11$ $17$ $20$ $24$ $32$
${f_i}$ $3$ $5$ $9$ $5$ $4$ $3$ $1$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Presenting the data in tabular form (Table), we get

${x_i}$ ${f_i}$ ${f_i}{x_i}$ ${{x_i} - \bar x}$ ${\left( {{x_i} - \bar x} \right)^2}$ ${f_i}{\left( {{x_i} - \bar x} \right)^2}$
$4$ $3$ $12$ $-10$ $100$ $300$
$8$ $5$ $40$ $-6$ $36$ $180$
$11$ $9$ $99$ $-3$ $9$ $81$
$17$ $5$ $85$ $3$ $9$ $45$
$20$ $4$ $80$ $6$ $36$ $144$
$24$ $3$ $72$ $10$ $100$ $300$
$32$ $1$ $32$ $18$ $324$ $324$
  $30$ $420$     $1374$

$N = 30,\sum\limits_{i = 1}^7 {{f_i}{x_i}}  = 420,\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2} = 1374} $

Therefore $\bar x = \frac{{\sum\limits_{i = 1}^7 {{f_i}{x_i}} }}{N} = \frac{1}{{30}} \times 420 = 14$

Hence    Variance $\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $

$\left( {{\sigma ^2}} \right) = \frac{1}{N}\sum\limits_{i = 1}^7 {{f_i}{{\left( {{x_i} - \bar x} \right)}^2}} $

and    Standard deviation $\left( \sigma  \right) = \sqrt {45.8}  = 6.77$

Similar Questions

माना $X=\{x \in N : 1 \leq x \leq 17\}$ और $Y=\{a x+b: x \in X$ और $a, b \in R , a>0\}$ यदि $Y$ के अवयव का माध्य और प्रसरण क्रमश $17$ और $216$ है तो $a+b$ बराबर है

  • [JEE MAIN 2020]

यदि संख्याओं $1,2,3, \ldots .,, n$ (जहाँ $n$ विषम है) का माध्य के सापेक्ष माध्य विचलन $\frac{5( n +1)}{ n }$ है तब $n$ बराबर होगा -

  • [JEE MAIN 2022]

यदि पाँच प्रे क्षणों $x _{1}, x _{2}, x _{3}, x _{4}, x _{5}$ का माध्य तथा मानक विचलन क्रमशः $10$ तथा $3$ हो, तो छः प्रेक्षणों $x _{1}, x _{2}, \ldots, x _{5}$ तथा $-50$ का प्रसरण होगा-

  • [JEE MAIN 2019]

$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $2$ हैं। इन $10$ प्रेक्षणों में से प्रत्येक को $p$ से गुणा करने के पश्चात प्रत्येक में से $q$ कम किया गया, जहाँ $p \neq 0$ तथा $q \neq 0$ हैं। यदि नए माध्य तथा मानक विचलन के मान अपने मूल मानों के आधे हैं, तो $q$ का मान हैं 

  • [JEE MAIN 2020]

माना बंटन

$X_i$ $0$ $1$ $2$ $3$ $4$ $5$
$f_i$ $k+2$ $2k$ $K^{2}-1$ $K^{2}-1$ $K^{2}-1$ $k-3$

जहाँ $\sum \mathrm{f}_{\mathrm{i}}=62$ है, का माध्य $\mu$ तथा मानक विचलन $\sigma$ हैं। यदि $[\mathrm{x}]$ महत्तम पूर्णांक $\leq \mathrm{x}$ है, तो $\left[\mu^2+\sigma^2\right]$ बराबर है

  • [JEE MAIN 2023]