यदि प्रेक्षणों ${x_1},\,{x_2},\,......{x_n}$ का प्रसरण ${\sigma ^2}$ है, तब $a{x_1},\,a{x_2},.......,\,{\rm{ }}a{x_n}$, $a \ne  0$ का प्रसरण है

  • A

    ${\sigma ^2}$

  • B

    $a\,{\sigma ^2}$

  • C

    ${a^2}{\sigma ^2}$

  • D

    $\frac{{{\sigma ^2}}}{{{a^2}}}$

Similar Questions

एक डिज़ाइन में बनाए गए वृत्तों के व्यास (मिमी में) नीचे दिए गए हैं। 

व्यास $33-36$ $37-40$ $41-44$ $45-48$ $49-52$
वृत्तों संख्या $15$ $17$ $21$ $22$ $25$

वृत्तों के व्यासों का मानक विचलन व माध्य व्यास ज्ञात कीजिए।

$10$ प्रेक्षणों के माध्य तथा मानक विचलन क्रमशः $20$ तथा $2$ हैं। इन $10$ प्रेक्षणों में से प्रत्येक को $p$ से गुणा करने के पश्चात प्रत्येक में से $q$ कम किया गया, जहाँ $p \neq 0$ तथा $q \neq 0$ हैं। यदि नए माध्य तथा मानक विचलन के मान अपने मूल मानों के आधे हैं, तो $q$ का मान हैं 

  • [JEE MAIN 2020]

निम्नलिखित आँकड़ों के लिए माध्य व प्रसरण ज्ञात कीजिए।

तीन के प्रथम $10$ गुणज

किसी समूह के प्रेक्षणों ${x_1},\,{x_2},\,.....{x_n}$ के लिये परिसर $r$ तथा मानक विचलन ${S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({x_i} - \bar x)}^2}} $ हैं, तब

 

यदि संख्याओं $-1,0,1, k$ का मानक विचलन $\sqrt{5}$ है, जहाँ $k > 0$ है, तो $k$ बराबर है

  • [JEE MAIN 2019]