निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।

वर्ग $0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $50-180$ $180-210$
बारंबारता $2$ $3$ $5$ $10$ $3$ $5$ $2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class

Frequency

 ${f_i}$

Mid-point

 ${x_i}$

${y_i} = \frac{{{x_i} - 105}}{{30}}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$0-30$ $2$ $15$ $-3$ $9$ $-6$ $18$
$30-60$ $3$ $45$ $-2$ $4$ $-6$ $12$
$60-90$ $5$ $75$ $-1$ $1$ $-5$ $5$
$90-120$ $10$ $105$ $0$ $0$ $0$ $0$
$120-150$ $3$ $135$ $1$ $1$ $3$ $3$
$150-180$ $5$ $165$ $2$ $4$ $10$ $20$
$180-210$ $2$ $195$ $3$ $9$ $6$ $18$
  $30$       $2$ $76$

Mean, $ \bar x = A + \frac{{\sum\limits_{i = 1}^7 {{f_i}{y_i}} }}{N} \times h$

$ = 105 + \frac{2}{{30}} \times 30 = 105 + 2 = 107$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^7 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^7 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right]$

$=2280-4$

$=2276$

Similar Questions

संख्याओं $1, 2, 3, 4, 5, 6$ का माध्य तथा मानक विचलन है

माना कि $X$ एक याद्छिक चर (random variable) है, और माना कि $P(X=x), X$ के मान $x$ लेने की प्रायिकता (probability) को दर्शाता है। माना कि बिंदु (points) $(x, P(X=x)), x=0,1,2,3,4, x y$-तल में एक नियत सरल रेखा (fixed straight line) पर स्थित हैं, और सभी $x \in R -\{0,1,2,3,4\}$ के लिए $P(X=x)=0$ है। यदि $X$ का माध्य (mean) $\frac{5}{2}$ है, और $X$ का प्रसरण (variance) $\alpha$ है, तब $24 \alpha$ का मान. . . . .है।

  • [IIT 2024]

छात्रों द्वारा एक परीक्षा में प्राप्त अंकों के माध्य तथा प्रसरण क्रमशः $10$ तथा $4$ है। बाद में एक छात्र के अंक $8$ से बढ़ाकर $12$ किए जाते है। यदि अंकों का नया माध्य $10.2$ है, तो उनका नया प्रसरण है :

  • [JEE MAIN 2023]

यदि बारंबारता बंटन

$X_i$ $2$ $3$ $4$ $5$ $6$ $7$ $8$
Frequency $f_i$ $3$ $6$ $16$ $\alpha$ $9$ $5$ $6$

का प्रसरण $3$ है, तो $\alpha$ बराबर है________________.

  • [JEE MAIN 2023]

यदि बारंबारता बंटन

वर्ग : $0-10$ $10-20$ $20-30$ $30-40$ $40-50$
बारंबारता $2$ $3$ $x$ $5$ $4$

का माध्य $28$ है, तो इसका प्रसरण है____________.

  • [JEE MAIN 2023]