निम्नलिखित बारंबारता बंटन के लिए माध्य व प्रसरण ज्ञात कीजिए।

वर्ग $0-30$ $30-60$ $60-90$ $90-120$ $120-150$ $50-180$ $180-210$
बारंबारता $2$ $3$ $5$ $10$ $3$ $5$ $2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store
Class

Frequency

 ${f_i}$

Mid-point

 ${x_i}$

${y_i} = \frac{{{x_i} - 105}}{{30}}$ ${y_i}^2$ ${f_i}{y_i}$ ${f_i}{y_i}^2$
$0-30$ $2$ $15$ $-3$ $9$ $-6$ $18$
$30-60$ $3$ $45$ $-2$ $4$ $-6$ $12$
$60-90$ $5$ $75$ $-1$ $1$ $-5$ $5$
$90-120$ $10$ $105$ $0$ $0$ $0$ $0$
$120-150$ $3$ $135$ $1$ $1$ $3$ $3$
$150-180$ $5$ $165$ $2$ $4$ $10$ $20$
$180-210$ $2$ $195$ $3$ $9$ $6$ $18$
  $30$       $2$ $76$

Mean, $ \bar x = A + \frac{{\sum\limits_{i = 1}^7 {{f_i}{y_i}} }}{N} \times h$

$ = 105 + \frac{2}{{30}} \times 30 = 105 + 2 = 107$

Variance,  $\left( {{\sigma ^2}} \right) = \frac{{{h^2}}}{{{N^2}}}\left[ {N\sum\limits_{i = 1}^7 {{f_i}{y_i}^2 - {{\left( {\sum\limits_{i = 1}^7 {{f_i}{y_i}} } \right)}^2}} } \right]$

$=\frac{(30)^{2}}{(30)^{2}}\left[30 \times 76-(2)^{2}\right]$

$=2280-4$

$=2276$

Similar Questions

$7$ प्रेक्षणों का माध्य तथा प्रसरण क्रमशः $8$ तथा $16$ हैं। यदि दो प्रेक्षण $6$ तथा $8$ हैं, तो शेष $5$ प्रेक्षणों का प्रसरण है

  • [JEE MAIN 2021]

किसी बारम्बारता बंटन के लिये मानक विचलन की गणना निम्न में से किस सूत्र द्वारा करते हैं

संख्याओं $1, 2, 3, 4, 5, 6$ का माध्य तथा मानक विचलन है

बारंबारता बंटन

चर $( x )$ $x _{1}$ $x _{1}$ $x _{3} \ldots \ldots x _{15}$
बारंबारता $(f)$ $f _{1}$ $f _{1}$ $f _{3} \ldots f _{15}$

जहाँ $0 < x _{1} < x _{2} < x _{3} < \ldots < x _{15}=10$ तथा $\sum_{ i =1}^{15} f _{ i }>0$ है, का मानक विचलन, निम्न में से कौन-सा नहीं हो सकता ?

  • [JEE MAIN 2020]

माना छः संख्याएं $\mathrm{a}_1, \mathrm{a}_2, \mathrm{a}_3, \mathrm{a}_4, \mathrm{a}_5, \mathrm{a}_6$ समान्तर श्रेणी में है और $\mathrm{a}_1+\mathrm{a}_3=10$ है। यदि इन छ: संख्याओं का माध्य $\frac{19}{2}$ है और इनका प्रसरण $\sigma^2$ है, तब $8 \sigma^2$ का मान है :

  • [JEE MAIN 2023]