The mean and standard deviation of $20$ observations were calculated as $10$ and $2.5$ respectively. It was found that by mistake one data value was taken as $25$ instead of $35 .$ If $\alpha$ and $\sqrt{\beta}$ are the mean and standard deviation respectively for correct data, then $(\alpha, \beta)$ is :

  • [JEE MAIN 2021]
  • A

    $(11,26)$

  • B

    $(10.5,25)$

  • C

    $(11,25)$

  • D

    $(10.5,26)$

Similar Questions

Suppose a population $A $ has $100$ observations $ 101,102, . . .,200 $ and another population $B $ has $100$ observation $151,152, . . .,250$ .If $V_A$ and $V_B$ represent the variances of the two populations , respectively then $V_A / V_B$ is

  • [AIEEE 2006]

Let $S$ be the set of all values of $a_1$ for which the mean deviation about the mean of $100$ consecutive positive integers $a _1, a _2, a _3, \ldots ., a _{100}$ is $25$. Then $S$ is

  • [JEE MAIN 2023]

In a series of $2n$ observation, half of them are equal to $'a'$  and remaining half observations are equal to $' -a'$. If the standard deviation of this observations is $2$ then $\left| a \right|$ equals

  • [JEE MAIN 2013]

Let the mean and variance of the frequency distribution

$\mathrm{x}$ $\mathrm{x}_{1}=2$ $\mathrm{x}_{2}=6$ $\mathrm{x}_{3}=8$ $\mathrm{x}_{4}=9$
$\mathrm{f}$ $4$ $4$ $\alpha$ $\beta$

be $6$ and $6.8$ respectively. If $x_{3}$ is changed from $8$ to $7 ,$ then the mean for the new data will be:

  • [JEE MAIN 2021]

The mean and $S.D.$ of $1, 2, 3, 4, 5, 6$ is