વીસ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $10$ અને $2$ છે.પુનઃતપાસ કરતાં માલૂમ પડ્યું કે અવલોકન $8$ ખોટું છે. ખોટા અવલોકનને બદલે $12$ મૂકવામાં આવે તો સાચો મધ્યક અને સાચું પ્રમાણિત વિચલન શોધો.
When $8$ is replaced by $12$
Incorrect sum of observations $=200$
$\therefore$ Correct sum of observations $=200-8+12=204$
$\therefore$ Correct mean $=\frac{\text { Correct sum }}{20}=\frac{204}{20}=10.2$
Standard deviation $\sigma = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {{x_i}^2 - \frac{1}{{{n^2}}}{{\left( {\sum\limits_{i = 1}^n {{x_i}} } \right)}^2}} } $
$ = \sqrt {\frac{1}{n}\sum\limits_{i = 1}^n {x_i^2 - {{\left( {\bar x} \right)}^2}} } $
$ \Rightarrow 2 = \sqrt {\frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - {{\left( {10} \right)}^2}} } $
$ \Rightarrow 4 = \frac{1}{{20}}Incorrect\sum\limits_{i = 1}^n {x_i^2 - 100} $
$ \Rightarrow Incorrect\sum\limits_{i = 1}^n {x_i^2 = 2080} $
$\therefore Correct\,\,\sum\limits_{i = 1}^n {x_i^2 = \,} Incorrect\,\,\sum\limits_{i = 1}^n {x_i^2 - {{\left( 8 \right)}^2}} $
$=2080-64+144$
$=2160$
$\therefore$ Correct standard deviation $=\sqrt{\frac{\text { Correct } \sum x_{i}^{2}}{n}-(\text { Correct mean })^{2}}$
$=\sqrt{\frac{2160}{20}-(10.2)^{2}}$
$=\sqrt{108-104.04}$
$=\sqrt{3.96}$
$=1.98$
$15$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્મે $12$ અને $3$ ભણવામાં આવ્યા છે. ફેરચકાસણી કરતા એવું માલુમ થાય છે કે એક અવલોકન $12$ ની જગ્યાએ $10$ વાંચવામાં આવ્યું હતું. જો સાચાં અવલોક્નોના મધ્યક અને વિચરણ અનુક્રમે $\mu$ અને $\sigma^2$ વડે દર્શાવાય, તો $15\left(\mu+\mu^2+\sigma^2\right)=$.........................
$10$ અવલોકનનો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $2$ છે . જો દરેક અવલોકનોને $\mathrm{p}$ વડે ગુણીને $\mathrm{q}$ બાદ કરવામાં આવે છે કે જ્યાં $\mathrm{p} \neq 0$ અને $\mathrm{q} \neq 0 $. જો નવો મધ્યક અને વિચરણ એ જૂના મધ્યક અને વિચરણ કરતાં અડધું હોય તો $q$ મેળવો.
સંખ્યાઓ $a, b, 8, 5, 10 $ નો મધ્યક $6$ અને વિચરણ $6.80 $ હોય તો નીચે આપેલ પૈકી કઇ એક $a $ અને $b $ માટે શક્ય કિંમત છે ?
પ્રથમ $20$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.
નીચે આપેલ માહિતી માટે મધયક અને વિચરણ મેળવો
$\begin{array}{|l|l|l|l|l|} \hline x & 1 \leq x<3 & 3 \leq x<5 & 5 \leq x<7 & 7 \leq x<10 \\ \hline f & 6 & 4 & 5 & 1 \\ \hline \end{array}$