પ્રથમ $20$ પ્રાકૃતિક સંખ્યાઓનું વિચરણ શોધો.
$\frac{{133}}{4}$
$\frac{{379}}{{12}}$
$\frac{{133}}{2}$
$\frac{{399}}{4}$
જો $\sum\limits_{i = 1}^{18} {({x_i} - 8) = 9} $ અને $\sum\limits_{i = 1}^{18} {({x_i} - 8)^2 = 45} $ હોય તો $x_1, x_2, ...... x_{18}$ નું પ્રમાણિત વિચલન મેળવો
આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો : ત્રણના પ્રથમ $10$ ગુણિત
વિધાન $1$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વિચરણ $\frac{{{n^2} - 1}}{3}$ થાય
વિધાન $2$ : પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો સરવાળો $n^2$ અને પ્રથમ $n$ અયુગ્મ પ્રકૃતિક સંખ્યાઓનો વર્ગોનો સરવાળો $\frac{{n\left( {4{n^2} + 1} \right)}}{3}$ થાય
જો બે $200$ અને $300$ અવલોકનો ધરાવતા સમૂહોનો મધ્યક અનુક્રમે $25, 10$ અને તેમનો $S.D.$ અનુક્રમે $3$ અને $4$ હોય તો બંને સમૂહોને ભેગા કરતાં $500$ અવલોકનો ધરાવતા નવા સમૂહનો વિચરણ મેળવો.
પ્રયોગના $5$ અલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $4 $ અને $5.2$ છે. જો આ અવલોકનો પૈકી ત્રણ $1, 2$ અને $6,$ હોય તો બાકીના અવલોકનો કયા હશે ?