$10$ અવલોકનનો  મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $2$ છે . જો દરેક અવલોકનોને $\mathrm{p}$ વડે ગુણીને $\mathrm{q}$ બાદ કરવામાં આવે છે કે જ્યાં $\mathrm{p} \neq 0$ અને $\mathrm{q} \neq 0 $. જો નવો મધ્યક અને વિચરણ એ જૂના મધ્યક અને વિચરણ કરતાં અડધું હોય તો $q$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $-20$

  • B

    $10$

  • C

    $-10$

  • D

    $-5$

Similar Questions

ધારોકે $8$ સંખ્યાઓ $x, y, 10,12,6,12,4,8$ ના મધ્યક અને વિયરણ અનુક્રમે $9$ અને $9.25$ છે. જો $x > y$ હોય, તો $3 x-2 y=.........$.

  • [JEE MAIN 2023]

જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.

  • [JEE MAIN 2018]

અવલોકનો $^{10}C_0$ , $^{10}C_1$ , $^{10}C_2$ ,.... $^{10}C_{10}$ નો વિચરણ મેળવો. 

આપેલ પ્રત્યેક માહિતી માટે મધ્યક અને વિચરણ શોધો :

${x_i}$ $6$ $10$ $14$ $18$ $24$ $28$ $30$
${f_i}$ $2$ $4$ $7$ $12$ $8$ $4$ $3$

 

ધારોકે $X _{1}, X _{2}, \ldots, X _{18}$ એ $18$ અવલોકન છે કે જેથી $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ અને $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ જ્યાં $\alpha$ અને $\beta$ ભિન્ન વાસ્તવિક સંખ્યાઓ છે. જે આ અવલોકનોનું પ્રમાણિત વિચલન $1$ હોય, તો $|\alpha-\beta|$ નું મૂલ્ય ........ થાય. .

  • [JEE MAIN 2021]