$10$ અવલોકનનો  મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $20$ અને $2$ છે . જો દરેક અવલોકનોને $\mathrm{p}$ વડે ગુણીને $\mathrm{q}$ બાદ કરવામાં આવે છે કે જ્યાં $\mathrm{p} \neq 0$ અને $\mathrm{q} \neq 0 $. જો નવો મધ્યક અને વિચરણ એ જૂના મધ્યક અને વિચરણ કરતાં અડધું હોય તો $q$ મેળવો.

  • [JEE MAIN 2020]
  • A

    $-20$

  • B

    $10$

  • C

    $-10$

  • D

    $-5$

Similar Questions

$7$ અવલોકનોનો મધ્યક અને વિચરણ અનુક્રમે $8$ અને $16$ છે જો પ્રથમ પાંચ અવલોકનો $2, 4, 10,12,14$ હોય તો બાકી રહેલા અવલોકનોનો ધન તફાવત .............. થાય 

  • [JEE MAIN 2020]

જો શ્રેણીમાં  $2 n$ અવલોકન આપેલ છે જે પૈકી અડધા અવલોકનો $a$ અને બાકીના અવલોકનો $-a$ છે. અને જો અવલોકનોમાં અચળ $b$ ઉમેરવવામાં આવે તો માહિતીનો નવો મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $5$ અને $20 $ થાય છે તો $a^{2}+b^{2}$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]

સાત અવલોકન નો મધ્યક અને વિચરણ અનુક્રમે  $8$ અને $16$ છે. જો બે અવલોકનો $6$ અને $8,$ હોય તો બાકીના $5$ અવલોકનનું વિચરણ મેળવો.

  • [JEE MAIN 2021]

ધારો કે $n  $ અવલોકનો $x_1, x_2, ….., x_n$  એવો છે કે જેથી $\sum {x_i}^2 = 400 $ અને $\sum x_i = 80$  થાય તો નીચેના પૈકી $n$ કેટલી શક્ય કિંમતો મળે ?

ધારો કે $a_1, a_2, \ldots a_{10}$ એવા $10$ અવલોકનો છે કે જેથી $\sum_{k=1}^{10} a_k=50$ અને $\sum_{k < j} a_k \cdot a_j=1100$, તો $a_1, a_2, \ldots, a_{10}$ નું પ્રમાણિત વિચલન ....................છે.

  • [JEE MAIN 2024]