वृत्त $C_1:(x-4)^2+(y-5)^2=4$ की जीवाओं के मध्य बिन्दुओं का बिन्दुपथ जो वृत्त $C_1$ के केन्द्र पर कोण $\theta_i$ बनाता है, जिसकी त्रिज्या $r_i$ है। यदि $\theta_1=\frac{\pi}{3}$, $\theta_3=\frac{2 \pi}{3}$ तथा $\mathrm{r}_1^2=\mathrm{r}_2^2+\mathrm{r}_3^2$ है, तो $\theta_2$ बराबर है:
$\frac{\pi}{4}$
$\frac{3 \pi}{4}$
$\frac{\pi}{6}$
$\frac{\pi}{2}$
यदि वृत्त ${x^2} + {y^2} + 6x - 2y + k = 0$ वृत्त ${x^2} + {y^2} + 2x - 6y - 15 = 0$ की परिधि को समद्विभाजित करता है, तो $k$ का मान है
माना $C _{1}$ तथा $C _{2}$ क्रमशः वृत्तों $x ^{2}+ y ^{2}-2 x -2 y -2=0$ तथा $x ^{2}+ y ^{2}-6 x -6 y +14=0$ के केन्द्र हैं। यदि $P$ तथा $Q$ इन वृत्तों के प्रतिच्छेदन बिन्दु हैं, तो चतुर्भुज $PC _{1} QC _{2}$ का क्षेत्रफल (वर्ग इकाई में) है
किसी त्रिभुज की तीन भुजाओं को व्यास मानकर खींचे गये वृत्तों का मूलकेन्द्र त्रिभुज का होगा
वृत्तों $3{x^2} + 3{y^2} - 7x + 8y + 11 = 0$ तथा ${x^2} + {y^2} - 3x - 4y + 5 = 0$ का मूलाक्ष है
वृत्तों ${x^2} + {y^2} = 4$ और ${x^2} + {y^2} - 6x - 8y = 24$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है