माना $C _{1}$ तथा $C _{2}$ क्रमशः वृत्तों $x ^{2}+ y ^{2}-2 x -2 y -2=0$ तथा $x ^{2}+ y ^{2}-6 x -6 y +14=0$ के केन्द्र हैं। यदि $P$ तथा $Q$ इन वृत्तों के प्रतिच्छेदन बिन्दु हैं, तो चतुर्भुज $PC _{1} QC _{2}$ का क्षेत्रफल (वर्ग इकाई में) है
$8$
$6$
$9$
$4$
दो वृत्तों ${x^2} + {y^2} = 4$ व ${x^2} - {y^2} - 8x + 12 = 0$ की उभयनिष्ठ स्पर्शियों की संख्या है
$k$ का वह मान जिसके लिये वृत्त ${x^2} + {y^2} + kx + 4y + 2 = 0$ व $2({x^2} + {y^2}) - 4x - 3y + k = 0$ लम्बवत् प्रतिच्छेदित करते हैं, है
वृत्तों ${x^2} + {y^2} = 4$ और ${x^2} + {y^2} - 6x - 8y = 24$ की उभयनिष्ठ स्पर्श रेखाओं की संख्या है
वृत्तों ${x^2} + {y^2} - 6x - 2y + 1 = 0$ तथा ${x^2} + {y^2} + 2x - 8y + 13 = 0$ के लिए निम्न में से कौनसा सत्य है
उस वृत्त का समीकरण जो वृत्तों ${x^2} + {y^2} - 6x + 8 = 0$ व ${x^2} + {y^2} = 6$ के प्रतिच्छेद बिन्दुओं तथा बिन्दु $(1, 1)$ से जाता है, है