અસમતા ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$ નો ઉકેલ ગણ મેળવો
$\left( {0,{5^{ - 2\sqrt 5 }}} \right]$
$\left[ {{5^{2\sqrt 5 }},\infty } \right)$
બંને $(A)$ $\&$ $(B)$
$(0, \infty )$
જો ${\log _5}a.{\log _a}x = 2 $ તો $x = . . . .$
જો $log_ab + log_bc + log_ca$ એ શૂન્ય હોય જ્યાં $a, b$ અને $c$ એક સિવાય ભિન્ન વાસ્તવિક સંખ્યાઓ હોય તો $(log_ab)^3 + (log_bc)^3 + (log_ca)^3$ ની કિમત .............. થાય
${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
જો $\log x:\log y:\log z = (y - z)\,:\,(z - x):(x - y)$ તો