${\log _7}{\log _7}\sqrt {7(\sqrt {7\sqrt 7 } )} = $
$3{\log _2}7$
$1 - 3{\log _3}7$
$1 - 3{\log _7}2$
એકપણ નહી.
જો ${a^x} = b,{b^y} = c,{c^z} = a,$ તો $xyz = . . . .$
$\log _{\left(x+\frac{7}{2}\right)}\left(\frac{x-7}{2 x-3}\right)^2 \geq 0$ નાં પૂર્ણાક ઉકેલો $x$ ની સંખ્યા $..........$ છે.
જો $x, y, z \in R^+$ એવા છે કે જેથી $z > y > x > 1$ , ${\log _y}x + {\log _x}y = \frac{5}{2}$ અને ${\log _z}y + {\log _y}z = \frac{{10}}{3}$ થાય તો ${\log _x}z$ ની કિમત મેળવો .
જો $x = {\log _5}(1000)$ અને $y = {\log _7}(2058)$ તો
જો ${\log _{\tan {{30}^ \circ }}}\left( {\frac{{2{{\left| z \right|}^2} + 2\left| z \right| - 3}}{{\left| z \right| + 1}}} \right)\, < \, - 2$ હોય તો