The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$
$\left( {0,{5^{ - 2\sqrt 5 }}} \right]$
$\left[ {{5^{2\sqrt 5 }},\infty } \right)$
Both $(A)$ $\&$ $(B)$
$(0, \infty )$
The value of ${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9$ is
The set of real values of $x$ for which ${\log _{0.2}}{{x + 2} \over x} \le 1$ is
The product of all positive real values of $x$ satisfying the equation $x^{\left(16\left(\log _5 x\right)^3-68 \log _5 x\right)}=5^{-16}$is. . . . .
If $A = {\log _2}{\log _2}{\log _4}256 + 2{\log _{\sqrt 2 \,}}\,2,$ then $A$ is equal to
If ${\log _4}5 = a$ and ${\log _5}6 = b,$ then ${\log _3}2$ is equal to