The interval of $x$ in which the inequality ${5^{(1/4)(\log _5^2x)}}\, \geqslant \,5{x^{(1/5)(\log _5^x)}}$
$\left( {0,{5^{ - 2\sqrt 5 }}} \right]$
$\left[ {{5^{2\sqrt 5 }},\infty } \right)$
Both $(A)$ $\&$ $(B)$
$(0, \infty )$
Solution set of inequality ${\log _{10}}({x^2} - 2x - 2) \le 0$ is
If ${\log _7}2 = m,$ then ${\log _{49}}28$ is equal to
For $y = {\log _a}x$ to be defined $'a'$ must be
If ${1 \over 2} \le {\log _{0.1}}x \le 2$ then
$7\log \left( {{{16} \over {15}}} \right) + 5\log \left( {{{25} \over {24}}} \right) + 3\log \left( {{{81} \over {80}}} \right)$ is equal to