${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
$\left( { - \infty ,\,2} \right]$
$[2,\,4]$
$\left[ {4, + \infty } \right)$
એકપણ નહી.
${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9= . .$ . .
જો ${1 \over 2} \le {\log _{0.1}}x \le 2$ તો
જો ${\log _{0.04}}(x - 1) \ge {\log _{0.2}}(x - 1)$ તો $x$ ની .. . . . અંતરાલમાં છે.
જો ${\log _7}2 = m$ તો ${\log _{49}}28 = . . . .$
${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}= . . . $.