${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
$\left( { - \infty ,\,2} \right]$
$[2,\,4]$
$\left[ {4, + \infty } \right)$
એકપણ નહી.
સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.
${\log _3}\,4{\log _4}\,5{\log _5}\,6{\log _6}\,7{\log _7}\,8{\log _8}\,9= . .$ . .
જો $a = {\log _{24}}12,\,b = {\log _{36}}24$ અને $c = {\log _{48}}36$ તો $1+abc = . . . .$
જો ${\log _7}2 = m$ તો ${\log _{49}}28 = . . . .$
જો $x = {\log _a}(bc),y = {\log _b}(ca),z = {\log _c}(ab),$ તો આપેલ પૈકી કોની કિમત $1$ છે.