${\log _{1/2}}({x^2} - 6x + 12) \ge - 2$ નું સમાધાન કરે તેવી $x$ ની વાસ્તવિક કિમતોનો ગણ મેળવો.
$\left( { - \infty ,\,2} \right]$
$[2,\,4]$
$\left[ {4, + \infty } \right)$
એકપણ નહી.
$(0.16)^{\log _{2.5}\left(\frac{1}{3}+\frac{1}{3^{2}}+\frac{1}{3^{3}}+\ldots . to \infty\right)}$ ની કિમત શોધો
${\log _2}.{\log _3}....{\log _{100}}{100^{{{99}^{{{98}^{{.^{{.^{{{.2}^1}}}}}}}}}}}= . . . $.
$32\root 5 \of 4 $ to the base $2\sqrt 2 = . . . .$
જો $x = {\log _b}a,\,\,y = {\log _c}b,\,\,\,z = {\log _a}c$ તો $xyz = . . . .$
સમીકરણ ${\log _7}{\log _5}$ $(\sqrt {{x^2} + 5 + x} ) = 0$ નો ઉકેલ મેળવો.