समीकरण $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ का व्यापक हल है
$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{{12}}$
$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{{12}}$
यदि $0 \le x \le \pi $ तब ${81^{{{\sin }^2}x}} + {81^{{{\cos }^2}x}} = 30$ है, तो $x$ का मान है
यदि ${\sin ^2}\theta = \frac{1}{4},$ तो $\theta $ का सर्वव्यापक मान है
यदि $\cos \theta + \cos 2\theta + \cos 3\theta = 0$, तब $\theta $ का व्यापक मान होगा
समुच्चय $S=\left\{\theta \epsilon[-4 \pi, 4 \pi]: 3 \cos ^2 2 \theta+\right.$ $6 \cos 2 \theta-10 \cos ^2 \theta+5=0$ में अवयवों की संख्या है $........$
यदि ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ तो $\theta $ व $\phi $ के मान हैं