मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$
यदि $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, तो $\sin \theta $ का मान है
यदि $\sec x\cos 5x + 1 = 0$, जहाँ $0 < x < 2\pi $, तो $x =$
समीकरण, $\sin ^{7} x +\cos ^{7} x =1$ के $x \in[0,4 \pi]$ में हलों की संख्या है -
समीकरण $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ के अंतराल $[0,2 \pi]$ में भिन्न हलों की संख्या ....... है |